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ABSTRACT

The software crisis initiated a major <change in the
perspective of software engineering. While conventional
methodologies may have met software development requirements a
decade ago, the present scale of programming has made automation
of the development process imperative. Recent research focusses
on the application of artificial intelligence (AI) techniques to
software engineering. The ultimate goal is the automation of the
entire software development life cycle.

An overview of the software development 1life cycle is
presented. The feasibility of incorporating AI methods for
automating the traditional and prototyping approaches to software
development is explored. A number of current research projects
which apply AI to software engineering tasks, including a
knowledge-based software project manager, are discussed. Future
research areas are highlighted.
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1. INTRODUCTION

Software engineering has emerged as an important area in
computer science. It focusses on the development and
. implementation of large software systems (Zelkowitz, 1¢79). The

field seeks to systematize and formalize the various activities

involved in the science of programming and systems development.
In the early seventies, the need for such formalization arose
when conventional development methods failed to adequately meet
the challenges posed by system design. This period was
characterized by tremendous improvements in hardware technology.
As a result of these advances, computer systems with high power
and large capacity became feasiblef Such systems led to the need
for very large and extremely complex programming tasks. This
phenomenon is designated as the software crisis (Sommerville,
1985).

While software engineering has developed into a practical
methodology to overcome the software crisis, another important
area in computer science that has emerged 1is artificial
intelligence (AI). Although it is not the intent of this paper
to precisely and formally define AI, its general meaning can be
intuitively described as the science of making computers
"intelligent." Intelligent in the sense that they are capable of

- performing actions that they have not been explicitly programmed
to do (Barr, 1981; Barr, 1982). An illustrative case is the

ability to reason and infer based on incomplete knowledge and to




evaluate alternatives wusing heuristics. Machines that can
“learn" based upon their past experiences can also be included in
this category.

The investigation presented in this report emphasizes
integrating the two fields for achieving software development
automation. The ultimate goal of this integration is to develop
systems that generate reliable machine executable programs
starting with the requirements definition phase (Partridge,
1986). Although considerable progress remains to be made before
this goal 1is attained, current research has succeeded in
automating come aspects of the software development life cycle
(SDLC) .

Several current research projects attempt to automate the
various SDLC stages (Table 1). Some address more than one stage.
The Knowledge Based Software Assistant (KBSA) project at the Rome
Air Development Center (KBSA, 1987) is an attempt to develop a
comprehensive, intelligent software development environment. The
Programmer’s Apprentice (PA) project at the Massachusetts
Institute of Technology focusses on developing an intelligent
system that emulates a human assistant. The ultimate objective
is to continually gather problem-solving heuristics uutil the
system approximates the expert’s knowledge. The GLITTER project
at the University of Oregon, Eugene seeks to formalize and
automate the specifications process. The Knowledge Based

Programming Assistant (KBPA) project at the University of
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Illinois, Urbana focusses on developing an intelligent design,
coding, testing, and debugging tool.

Table 2 1lists several other projects that attempt to
automate the various stages of the SDILC. While most of these
focus on activities such as requirements analysis,
specifications, design, and code generation, the effort has not
been toward applying AI techniques for improving rapid
prototyping. Rapid prototyping is an iterative process of
developing programs from incomplete specifications. Since AI
involves solutions to problems with incomplete knowledge, it can
be useful for this purpose.

Another important aspect of the integration is automated
software management support. Efforts 1like Time Line
(Breakthrough Software Corporation, Novato, California) and
Harvard Project Manager (Software Publishing Corporation,
Mountain View, California) were not knowledge-based. In
addition, little work has been done in software management using
metric-based measurements.

Metric-based software measurement is a branch of software
management which uses past performance to make predictions about
current projects. Early research in metrics was nearly abandoned
since the results obtained from metrics were sometimes
controversial and substantially different from actuals. Another
reason for the lack of interest was the difficulty in collecting
data for the metrics. However, in recent years, software quality

has become increasingly important. This has led to the revival
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of metrics measures. Research has generated reliable metrics
which can be used as project management guidelines. In addition,
developments in hardware and software have made it easier to
automatically collect metrics data (e.g., run time and source
lines of code). A project is underway to develop a
knowledge-based system, SOFTMAN Apprentice, for performing
automated project management. The system derives its basic
concept from metrics research performed at the University of

Maryland (Basili, 1985).




2. OVERVIEW OF THE TRADITIONAL DEVELOPMENT LIFE CYCLE

An important concept in software engineering is that of the
SDLC. As the name implies, it describes the process of
developing a software system from conception through
implementation and maintenance (Birrell, 1985). This process
proceeds through several stages (Beregi, 1984), during which the
system 1is successively transformed from high-level, natural

language specifications to machine executable code (Figure 1).

2.1 REQUIREMENTS PHASE

The first stage in the SDILC is requirements analysis. In
this phase, system analysts work to understand the existing
software and hardware environment of the user. The user provides
the problem description and specification to the analysts. The
analysts identify potential solutions to any problems and rank
them in order of certain parameters (e.g., cost and performance).
Finally, they define the problem in terms of its functions and
constraints. An acceptable solution to the problem and a
statement of resources are determined. A document is written

communicating requirements to the development team.

2.2 SPECIFICATIONS PHASE

From user specifications, software developers produce the
architectural specifications. This framework identifies the
interfaces and interrelationships between various systenm

components, as well as the data flow between the components.




PHASES:

(1) REQUIREMENTS

<.

(2) SPECFICATON

<

(3) DESIGN
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) CODING
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Figure 1. Traditional Approach to Software Development
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Internal details of compénents are deferred to a later stage.
The specifications are expressed in formal or semi-formal
language. In addition, flowcharts or diagrams (e.g., HIPO
charts) which pictorially depict the relationships between
components may be developed. One statement at this level may

expand to approximately one hundred lines of code.

2.3 DESIGN PHASE

It is in this phase that internal details of components are
written using pseudo-code, flowcharts, decision tables, etc. One
statement may expand to fifteen lines of code in the final
product. Design defects are removed by manual inspections;
undetected errors usually will not surface until the testing

phase.

2.4 CODING PHASE

The algorithms for how the computer will solve the problem
are developed during the design phase. After the design of the
system is complete, coding begins. Herein, the abstract design
is transformed via a programming language (e.g., PL/I, COBOL, and
Pascal) into a compilable program.

Coding is followed by system testing which essentially
consists of activities such as verification and validation.
During verification, the correctness of the system is checked.
Validation is the process of checking whether the system performs
its intended duties and solves its intended problem. In other

words, validation seeks to prove the system’s correspondence

11
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(Blum, 1986). The subtle point to be noted is that while a

program might be correct (i.e., true to its specifications), it
might not be the solution that is sought if the original

specifications were wrong.

2.5 IMPLEMENTATION AND VERIFICATION PHASE

Programmers code individual modules in high-level languages
and test each module. These modules are then integrated, and
tested for performance, functionality, and reliability. Design
errors not detected until this stage may cost as much as 75-80%

more to correct (Martin, 1985).

2.6 MAINTENANCE PHASE

This phase coexists with the usage of the software product.
It begins when the product goes on-line and involves correction
of errors detected during product usage. Such modifications may
involve major changes in the software which could be expensive in
terms of time and money. The maintenance phase constitutes about
60-80% of the software life cycle (Sommerville, 1985; Spies,

1983).

2.7 DISADVANTAGES OF THE TRADITIONAL APPROACH

The traditional method suffers from various shortcomings
when used for large scale software development. Errors may be
costly to detect and correct. Due to the length of time between
specification and implementation phases, deadlines may be missed.
Exploration of alternative designs are not feasible. In
addition, most existing reusable code is not utilized.

12
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2.7.1 Error Correctjon

It may not be possible for the user to precisely define the
product’s operational requirements during the requirements phase.
While operational parameters like performance and ease-of-use are
more readily detected after the product has been implemented,
specification inconsistencies are hard to detect. However, since
they are identified late in the SDLC, such errors may lead to
considerable changes in the original design itself.

2.7.2 Missed Deadlines

In large software projects, the intervening period between
the requirements and verification phases is so long that product
specifications often change by the time the product is
implemented. Users may be dissatisfied with the final product.
Changes are required to make the software acceptable to users.
This can be time-consuming and expensive, resulting in missed
deadlines.

2.7.3 Elimjnatjon of Alternatijves

Since it is rather expensive to build a working model in
this approach, neither users nor developers can explore the
effects of alternative designs on system performance. Hence, the
design may not be an optimal one. However, it is important to
have inexpensive, throw-away models for examining these aspects.
2.7.4 Redundancy

The traditional approach does not take advantage of existing
generalized software. Such software is usually available for the

maintenance of databases, security, and data integrity (Naumann,

13




1982). These utilities are often rewritten explicitly for the
user in the traditional approach. The same is true of various
generalized input-output software.

The traditional approach to software development entails
many modifications to the software. If user specifications are
poorly defined, this process becomes inefficient. An approach
which combines lengthy and sequential SDLC stages into a single,
short activity would be more effective. The prototyping approach

seeks to achieve this goal.

14




3. OVERVIEW OF THE PROTOTYPING APPROACH TO SOFTWARE DEVELOPMENT

Section 2 presented a short overview of the traditional
approach to software engineering. An alternative to the
"waterfall” methodology is rapid prototyping. A prototype is a
working model which is built cheaply and quickly to test the
validity of initial specifications and requirements. The user
checks the product after every refinement to verify expectations
and uncover inconsistencies (e.g., ease-of-use). The product is
modified iteratively until it becomes acceptable to the user
(Lipp, 1986).

Prototyping does require some initial resources (e.qg.,
fourth generation languages) to enable fast development. The
approach implicitly assumes that because human resources are most
expensive, they are the most important. Therefore, one must risk
other resources (e.g., hardware) prior to product development
(Gremillion, 1983).

The basic motivation behind this approach is the observation
that when a system is developed, the initial specifications are
rarely complete and correct. The result is that the shortcomings
of the system become apparent only after it has been developed;
therefore, the design either needs to be modified or
restructured. However, through prototyping an elementary design
is quickly developed and implemented. Therefore, if a design is
inadequate or faulty, it can be discarded and a new one
developed. This process is iterated until all requirements of
the system are met (Figure 2).
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3.1 ADVANTAGES OF PROTOTYPING
3.1.1 Reduced Specification and Design Errors

Since this approach involves continuous interaction between
the user and the developer, prototyping reduces specification
errors. Because the first version of the product is available
during early development (e.g., typically in days or weeks),
design errors can be addressed quickly. Consequently, the final
product has fewer inconsistencies when compared to the
traditional approach.
3.1.2 i i Q ste

Software 1is rarely rewritten; existing tools (e.q.
databases, query languages, and report generators) are used.
Often, the product is built using a fourth generation language
which relieves the user of data representation and procedural
details. Since errors are discovered quickly, less time is spent
correcting them. For example, John Deere reports that
inexperienced programmers could rewrite existing COBOL programs
using 1IBM’s ADF (Application Development Facility). A
productivity twice that of the COBOL team was achieved (Haltz,
1980) .
3.1.3 Increased User Satisfaction

The traditional approach usually does not involve the end
user until the implementation phase. This disassociates the user
from much of the software development process. However, rapid
prototyping involves the user early in the development process.

The user and developer participate in various sessions, thereby,
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enabling the development of a close rapport. Appleton (1973)
exemplifies prototyping in a functional applications system which
was initially developed using the traditional 1life-cycle
approach. The system was redeveloped using prototyping. It was

reported that the new product eliminated user dissatisfaction and

responded better to the users' dynamic environment. .
3.1.4 Increased Desian Options

For most systems, one particular solution cannot be
designated as the best. In the traditional development method,
the goal is to produce a feasible system the first time.
Conversely, that may not be possible in a single-pass approach.
However, in the prototyping method, when a trial-and-error
approach is used, designs can be iteratively produced and

discarded until an optimal solution is found.

3.2 RESOURCES ASSOCIATED WITH PROTOTYPING
3.2.1 On-line Interactijve Systems

The philosophy behind the prototyping approach is to develop
systems rapidly. Batch systems are not suitable for this
purpose. However, on-line interactive systems are able to
respond more rapidly to user needs.
3.2.2 Fourth Generation Landuages

Fourth generation languages, also known as VHLL's (Very
High-Level Languages), are program development tools which .
relieve the user of the data representation and procedural

details of conventional languages (e.g., COBOL and PL/1). Fourth

generation languages are primarily interpretive with features of
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high-level coding incorporated. Such capabilities decrease
applications development time. For example, a benchmark version
of a management report system was developed at Heublein, Inc.
Using COBOL, the effort required six months. The same program
was created in half a day with Information Builders' fourth
generation package, FOCUS (McCracken, 1980).
3.2.3 Generalized Software

Generalized software provides database creation and update
capabilities without the deve'pment of complex programs.
Various packages are available for editing the database and
producing reports. 1In addition, security features are inherent
in such software. The burden of programming details, not

directly related to the project, is shifted from the programmer.

3.3 COMPARISON OF RESOURCES NEEDED FOR THE TWO METHODOLOGIES

3.3.1 Development Cost and Time

Evidence suggests that both the development cost and time in
the prototyping approach are significantly 1less than that
required in the traditional approach (Naumann, 1982). Scott
(1978) describes a system that was estimated to cost $350,000;
however, using the prototyping approach, its development costs
totalled $35,000. In addition, other researchers (Read, 1981;
Mason, 1982) report productivity gains with reduction in human

resources.
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Mason (1982) describes a rapid prototyping tool called
ACT/1. This tool provides specifications using scenarios which
are essentially user-system dialogues. | These prototypes are
translated by ACT/1 for production use.

.3.3.2 Resource Cost

When high-level tools are involved, considerable resource
acquisition costs may be associated with the prototyping
approach. Since the cost is only for the initial installation,
it may not be a major cost component if distributed over many

projects. The traditional approach does not involve this cost

factor.
3.3.3 Opportunjty Cost

Opportunity cost must be taken into account when comparing
the two development approaches. The prototyping approach
produces a working system much faster. In the traditional

method, the system is not available for a long period (i.e., from
the start to completion). Therefore, there is an opportunity
cost associated with the delayed availability of the product.
3.3.4 erat Cc

Costs are involved during system operation. For example,
generalized software may produce inefficient code with increased
run-time. If coding in the traditional method were by expert
programmers, operating costs may be higher for systems developed
using the prototype model. However, because software teams
routinely do not utilize expert programmers, the operating cost

for the prototyping approach may not be significantly different.
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3.3.5 Maintenance Cost

Maintenance costs are largely due to the various design and
specification errors discovered after the product is in
operation. With the prototyping approach, errors are more likely
to be discovered early in the development process. Because
changes are made early and at a higher level, this results in a

lower maintenance cost for prototyped systems.

3.4 CIRCUMSTANCES WHICH MAKE PROTOTYPING INEFFICIENT
3.4.1 Well-Defined Goals

Some projects may have well-defined, stringent requirements.
It may be possible to accurately define the specifications before
the product is developed. 1In such situations, it is appropriate
to develop the product using the traditional approach. This may
also result in more efficient code in a lower-level language.
3.4.2 Limited User Time

An underlying assumption in the prototyping method is
availability of user time. This may not always be possible or
convenient. In such situations, prototyping may not offer any
significant advantage over the traditional method.
3.4.3 High Resource Acquisjition Cost

Initial resource costs are usually high for prototyping
(e.g., fourth generation 1lanquages and generalized software).
These costs are not cumulative; they form a minor fraction of the
development cost if amortized over several projects. However,
resource costs may increase on a per-project basis if fewer
projects share the initial resource acquisition costs.

21




,

Due to its inherent development methodology, prototyping
yields several benefits which cannot be envisioned within the
traditional model framework. Disadvahtaqes of prototyping
related to inefficient code can be overcome by developing throw-

awvay prototypes. Such prototypes are used to incrementally

capture specifications. AI techniques can be used effectively to

build throw-away prototypes from incomplete specifications.
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4. AI AND SOFTWARE ENGINEERING

One solution suggested for the software crisis 1is the
development of software using AI techniques. Advantages of such
an approach are greater formalism and increased abstraction in
the entities and operations involved. This can be seen as an
intermediate step in developing methods that would allow
increased automation of software development activities. One
goal is to achieve higher programmer productivity.

The process of software development is an activity that is
inherently susceptible to errors. Errors can occur at all phases
of the SDLC. Their effects are amplified because they cascade.
Errors in requirements analysis can lead to errors in
specifications which, in turn, can lead to a faulty design, etc.
Oon the other hand, even if the specifications are correct, it is
possible for faulty code to be developed during the coding phase.
Therefore, a program being erroneous either 1logically or
syntactically, or both, is not an unusual phenomenon. Several
means have been suggested and tried for proving software
correctness (e.g., mathematical proofs, validation through
metrics collection and analysis, and error seeding). However,
none guarantee a completely bug-free and reliable program.
Application of AI to software engineering tasks can provide a

means of testing and verifying the correctness of programs.
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Specification languages (e.g., the VHLL in the REFINE
environment, GIST, and RML) can express software requirements in
executable form. They can be enhanced incrementally (e.g., at
each stage the new specifications are executable). In addition,
maintenance can be effected by changing system specifications
rather than applying patches to the source code (Goldberg, 1986).
With maintenance tasks requiring up to 80% of the software
development costs (Martin, 1983), this could result in a
substantial savings.

Rapid prototyping has been strongly advocated as an
alternative to the traditional software development method. 1In
one research effort by Tavendale (1985), a prototype is developed
from initial specifications and iteratively refined before the
formal design phase begins. The prototype is generated in Prolog
directly from the specifications. 1In this manner, an operational
model can be used to verify initial specifications before system
development proceeds. In other work, Fischer (1984) reports a
rapid prototyping approach which focussed on supporting both
specification and implementation stages of the SDIC.

Although the idea of rapid prototyping is not new, the
feasibility of its practical implementation is fairly iimited in
the conventional software development environment. Whereas
fourth generation languages lend themselves to prototyping, some
authors advocate the use of AI techniques (AI, 1984; Wess, 1984).
AI involves solutions to problems, knowledge about which is not

complete prior to implementation. This knowledge may be the
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specification of the problem or the data sets needed to reach the
solution (Loomis, 1986). The inference engine of an AI system
incorporates the search and reasoning methods to address such
situations. It uses existing knowledge to develop partial
solutions which may be further used to expand the knowledge base,
thereby, reducing the abstraction level of the specifications.

Rapid prototyping involves incremental development of user
programs based on incomplete user specifications. Such programs
must be flexible enough to be changed. Therefore, AI methods can
be used to prototype systems whose specifications and data are
initially ill defined. The inference engine saves the programmer
the burden of creating the detailed architecture for building
such a program. Since it is independent of the prototype that it
generates, the same inference engine can be used to develop
different pirototypes. Al methods also permit knowledge base
tracing to locate incorrect specifications and to provide system
documentation. With the use of AI, rapid prototyping becomes
feasible as a practical system development methodology.

Utilizing AI techniques, human expertise can be captured in
a "corporate memory" knowledge base. Such expertise can be made
more readily available for use by company personnel.
Additionally, the risk of losing information and knowledge when a

person leaves the organization is reduced.
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5. AI/SOFTWARE ENGINEERING CROSSOVER

The major areas into which AI applications can be divided
include: robotics, computer vision, voice/speech recognition,
machine learning, natural language processing, and expert (i.e.,
knowledge-based) systems (Mishkoff, 1985). The crossover between
software engineering and the first area, robotics, is quite an
unlikely prospect. However, computer vision research holds
promise of software engineering (e.g., software design using flow
charts and data flow diagrams) utilizing the concepts of machine
vision and pattern recognition. In addition, voice and speech
recognition can contribute extensively as an input medium for
specifications and design implementations. Currently, little
research is being conducted in these areas although such efforts
could become more feasible as the technology develops.

The last two areas mentioned are the most promising for
Al/software engineering interaction. Natural language processing
is an area of active research (Schank, 1984). Easy-to-use front
ends to expert systems that carry out software engineering tasks
are the focus. One area where this is being applied is in the
specifications phase. Natural language processors are used to
gather the specifications and transform them into formal or semi-
formal representations (Harandi, 1988). These can be further

processed by automated programming tools (e.g., code generators).
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The area that provides the widest scope for interaction
between AI and software engineering is expert systems. As
previously stated, the long~term objective of introducing AI into
software engineering is to automate the SDLC. Currently, expert
systems have been developed that perform requirements and
specifications analysis, code generation, testing, documentation,
etc. The following sections present major research efforts in

these areas.
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6. KNOWLEDGE-BASED SOFTWARE ASSISTANT (KBSA)

The KBSA project is a long-term effort being undertaken by
the Rome Air Development Center (RADC) to provide an automated
software development environment (Benner, 1987). The essential
difference between the current software engineering paradigm and
the one proposed by KBSA is that KBSA imposes more formalism on
every SDLC activity. It gathers the evolutionary history of the
system from conception to implementation. Therefore, it is able
to provide a complete scenario of the implementation strategy,
the decision making that went into a system, the rationale behind
the decisions, the interfaces between the various units of the
system, and the constraints imposed.

KBSA is characterized by the following features: a wide
spectrum VHLL; an incremental, executable, and formal
specification mechanism; a formal implementation scheme capable
of validating and evaluating design decisions; and a maintenance
facility at the specification 1level. In KBSA, implementation
starts with a high-level abstract specification and proceeds
through a series of correctness preserving transformations. KBSA
can be perceived as an integrated system composed of a framework
(Huseth, 1987) and the following five facets: Project Management
Assistant (Jullig, 1986) which performs project definition,
project monitoring, and user interface; Requirements Assistant
(Harris, 1987) which deals with the informal user requirements;
Specifications Assistant (Johnson, 1987) which formalizes
requirements, validates them against user intentions and makes
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them executable, and also provides a natural language front-end
paraphraser; Performance Assistant (Goldberg, 1987) which does a
performance analysis on the design decisions and evaluates them
at all levels of the SDIC; and Development Assistant which
derives an implementation from a completed specification.

| Currently, work on four of the five facets has begun. KBSA
is being investigated at four main institutions. Kestrel
Institute (Palo Alto, California) is developing the Project
Management Assistant and the Performance Assistant. Sanders
Associates (Nashua, New Hampshire) is developing the Requirements
Assistant. Work on the Specifications Assistant is being
performed by the University of Southern california - Information
Sciences Institute. The Development Assistant contract will be
awarded during the fiscal year 1988. The framework is being
developed by Honeywell Systems and Research Center (Minneapolis,

Minnesota).
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7. PROGRAMMER'S APPRENTICE (PA)

This MIT project follows the approach of duplicating a human
expert's software development and problem-solving skills (Rich,
1987). The near-term goal is to develop an intelligent system
which provides assistance during the different SDLC stages. PA
uses a formalism called Plan Calculus to represent programs and
programming knowledge. This scheme is a combination of the
representational properties of flowcharts, data flow diagrams,
and abstract data types. PA uses a library of several hundred
plans; plans contain information regarding implementation methods
and program forms.

The PA is composed of three parts: Requirements Apprentice
(Rich, 1986a) provides assistance during the requirements
analysis and specifications phase; Synthesis Apprentice (Rich,
1986b) aids in validation of the specifications, detection of
inconsistencies, and other design decisions; and the
Implementation Apprentice. There is a considerable overlap
between the Implementation Apprentice and the Synthesis
Apprentice. The main difference is the increased reasoning
capabilities of the Synthesis Apprentice. While the Synthesis
Apprentice provides support during several design phases, the
Implementation Apprentice provides support only during
implementation stages (e.g., code generation, editing, and
program modification and maintenance).

Currently in PA, the Implementation Apprentice has been
developed to a prototypical stage. A knowledge-based editor,
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KBEmacs, facilitates program creation by allowing algorithmic
fragments to be retrieved from a library (Waters, 1985; Waters,
1986) . Prototypes of other components of the PA project (e.q.,
Synthesis Apprentice and Requirements Apprentice) are under -

development.
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8. KNOWLEDGE BASED PROGRAMMING ASSISTANT (KBPA)

KBPA is under development at the University of Illinois
(Urbana, Champaign). It is a knowledge-based support tool for
software development (Harandi, 1986). It assists the programmer
in the process of software development using knowledge-based
techniques. KBPA is composed of four modules: design aid,
coding aid, debugging aid, and testing aid. Each unit uses
domain specific knowledge which is also a part of the global
knowledge base. Such a structure facilitates the use of the
modules as standalones or as integrated units.

The design aid module interacts with the user and obtains
the high-level specifications (i.e., major components, inputs,
and outputs) of the system. This is accomplished with the aid of
data flow diagrams. Such diagrams not only describe a program in
terms of the data that flows through it, but alsc the way that
data is processed.

The coding module consists of a program editor and a design
coder. This unit aids the programmer in identifying poor
programming practices and advises the user in designing data
structures. The design coder builds templates (i.e., abstract
program plans); the editor transforms them into code.

The debugging module incorporates various features of
intelligent debugging. One such model is the shallow model. It
locates the cause of errors by having an "intuitive" idea of the

specific program being debugged.
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In the Spring of 1986, prototypes of coding and debugging
modules had been implemented on the SUN and IBM RT. Currently,
the debugging unit is in an advanced stage of development. It is
used in debugging PASCAL programs as part of the University of
Illinois’ undergraduate curriculum. The design and testing

modules will be the last in the series to be implemented.
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9. GLITTER

GLITTER was developed at the University of Oregon (Eugene,
Oregon) . It is implemented in HEARSAY III (Balzer, 1980). The
system is used in-house at the University to automate the
requirements analysis process (Fickas, 1985a).

GLITTER 1is based on Balzer’s (1980) Transformational
Implementation (TI) model. The model starts with a formal
specification of the problen. It applies a sequence of
correctness preserving transformations until a specification
conforming to the implementation conditions is reached. The
original TI model suffered from a lack of automation and a formal
scheme for representing goals, strategies, and design decisions.

The GLITTER system is used to overcome such shortcomings.
It is an interactive transformation system that uses problem-
solving techniques to automatically generate many of the
transformation application steps. It provides a means for
formalizing goals, strategies, and design decisions by specifying
a language that allows their expression and manipulation. The
syntax for specifying a goal consists of the keyword "GOAL" and a
set of typed arguments.

Formalism in specifying and cataloging strategies is
achieved through the use of "methods." Each method consists of a
goal slot, a filter slot, and an action slot. The goal slot
specifies the goal that needs to be achieved. The filter slot
checks for the appropriateness of the method given the context.
The action slot performs the operations needed to achieve the
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goal. In addition, a method of conflict resolution between two
strategies that can be applied simultaneously is provided. This
is accomplished by the use of a "selection rule" mechanism. It
is similar to the IF/THEN rule construct and provides the
conflict resolution heuristic; this is usually a weight value
that is used to evaluate the suitability of the strategy given
the context.

One final advantage of GLITTER is that it provides a
documentation of the problem-solving process. This is done by
tracing the optimization sequence which led to the current state
of the problem. In other words, a history of the problem-solving
steps is provided. This aids in tracing the logic flow for
future maintenance.

Current research focusses on the development of an automated
requirements analysis system. The goal is to produce a complete
and correct requirements definition from sketchy, informal, and
incomplete user requirements (Fickas, 1985Db). GLITTER is used

extensively in this effort.
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10. SOFTWARE MANAGER APPRENTICE

As the size of a computer system increases, the complexity
of the software multiplies. The system becomes increasingly
difficult to monitor and manage. Therefore, it is useful to
investicate techniques for automating management decisions. 1In a
common situation, more than one programmer is writing code, with
one project manager controlling all activities. The manager must
ensure that the project is completed on time, within budget, and
is appropriate for the user's needs. Such decisions are usually
based on the manager's past experience with handling similar

development efforts.

10.1 RELEVANT RESEARCH

Little work has been done in the area of software
management support which includes metric-based software
measurement. One reason for this is the difficulty in collecting
the data for making judgements based on metrics. In addition,
there is debate regarding the accuracy of exclusively
metric-based judgements. Most research done in the field of
metrics has been in software complexity measurement (Belady,
1979; Curtis, 1979; Storm, 1979).

One research effort that does address metric-based software
management is ARROWSMITH-P, a demonstration prototype developed
for a Master's thesis at the University of Maryland (Basili,
1985). It was written using both rule-based and frame-based

approaches. This dual effort demonstrated that both techniques
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could produce comparably close results. The research project
indicated that enough knowledge about software management could
be input to obtain valid results from the system. ARROWSMITH-P
required the user to make judgements about the software project
(i.e., whether the number of lines of code were high or average,
whether the CPU time was high or average, etc.). Therefore, the
user had to be a semi-expert, while ARROWSMITH-P acted only as an

assistant.

10.2 CURRENT EFFORT

The Software Manager Apprentice (SOFTMAN) is a software
management system developed by the Center for Intelligent Systems
(0Oak Ridge, Tennessee) for the Army Institute for Research in
Management Information, Communications, and Computer Science
(AIRMICS) in Atlanta, Georgia. SOFTMAN does not require the
user to have expert knowledge. Instead, the user provides
quantitative inputs for the measurement metrics; SOFTMAN makes
the qualitative judgements. 1In its present development stage,
the software demonstrates the feasibility (i.e., a proof of
concept) of using expert systems as a technique for aiding
software management. One advantage of using the expert system
approach to project management is that knowledge about metrics
can be readily stored in rule sets (Figure 3). Moreover, I/0
can be accomplished using frame-bases (Figure 4). When 1in a
tutor mode, expert systems can also provide "how" and "why"

explanations about decisions (Emrich, 1985).
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The SOFTMAN system differs in several essential ways from
ARROWSMITH-P. Since ARROWSMITH-P required the user to make
qualitative judgements, there was no mathematics of metrics
involved. In contrast, the SOFTMAN system will calculate metric
values and make judgements based on the ranges in which the
calculated metric value falls. In SOFTMAN, uniform metrics are
not assumed throughout the development stage. Coding is divided
into early, middle, and late stages. Different metric judgements
are used for each stage. In addition, differences due to
language, productivity levels, and design considerations are used
to test a project's "health."

A primary aim of the system is to monitor the progress of a
time-bound software project. It checks for unexpected behavior
based on historical data collected from the environment. If
anomalies are detected, SOFTMAN will issue warnings. The manager
can then go deeper into the system to locate the problem and to
receive suggestions regarding corrective actions. Another use of
the system is as a tutor for training new personnel. In this
role, SOFTMAN can assist future managers with project parameter

estimation.

10.3 SOFTMAN SYSTEM

SOFTMAN is written using an expert system development tool,
Intelligence/Compiler (IntelligenceWare, 1986) and Turbo Pascal
(Borland, 1986). The overall system structure is shown in Figure
5. The consultation option consists of three modules.
DETERMINER (i.e., Module 1) determines if there is a problem in
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the software project. IDENTIFIER (i.e., Module 2) identifies
what the problem is and where it is located. REMOVER (Module 3)
recommends appropriate actions to be taken. The system is menu
driven (Appendix A). It guides the wuser through
question-and-answer sessions which primarily require short,
numeric answers, or menu solutions.

10.3.1 Modules 1 and 2

Upon initial entry into the system, the user is prompted to
enter the current date. This information is used to make
judgements about timely project completion. The "Main Menu"
lists available utilities (e.g., deleting projects, retrieving
consultations, and retrieving project updates).

When a new project is assigned to a manager, the "New
Project" option is used to enter the project parameters (e.g., a
unique project name, manager's name, estimated code size, number
of coders, date of start of coding, and estimated time for
project completion). Each parameter is input as a response to a
question. Once the project has been initiated, the manager can
intermittently consult SOFTMAN about the project's progress at a
given coding stage. Based on user responses and project

parameters, SOFTMAN will respond with a list of anomalies.
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Context sensitive help for each question is provided at the
bottom of the screen. Help messages are displayed in a
different color. Additional help is available and can be called
by pressing <Enter> in place of a numeric response.

10.3.2 Module 3

In the REMOVER module, the manager obtains a 1list of
possible causes for a problem that has been detected by Module 2.
To investigate these causes further, the manager will be asked
more specific gquestions about the parameters. Based on the
answers, SOFTMAN will suggest possible solutions. Some of these
will require the manager to update project estimates that were
initially entered. These updates will be stored and can be
retrieved for later viewing.

By asking the manager questions regarding the quality of
system design, the REMOVER module will provide 1links to the
design and testing phases. It is possible that SOFTMAN will
suggest that the manager backtrack and reevaluate the design
before proceeding further in the coding stage. Since the
solutions for the problems require qualitative judgements,

#Hodule 3 will be knowledge intensive (i.e., rule based).

10.4 CURRENT STATUS

The present system has five input development parameters
gathered in Modules 1 and 2:

1) Number of lines of code.

2) Number of programmer hours.

3) Number of computer runs.

4) Number of software changes.

5) Amount of CPU time used.
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Based on these parameters, Module 2 makes judgements on six
outputs (i.e., project schedule, productivity, code length, cpu
time, changes, and CPU runs) and identifies them as having a
problem or not. From this list, the user can analyze one problenm
at a time. When a problem is selected, a color-bar comparison of
the "Optimal Value" for that output parameter and the M“Actual
Value" from the project is provided. 1In addition, a brief text
is displayed to explain the problem. Currently, further help in
problem solution is provided for some output parameters (e.q.,
"Project Time Schedule").

After a consultation, the user may elect to store the
results for later retrieval. Such data can be used for guiding
new estimates. If the user elects not to save the session, a
message is displayed warning that all recent inputs and outputs
will be lost.

The user is given an opportunity to revise initial project
parameters. Via the "Main Menu,” each update made to a project
is stored. Updates can be retrieved for future consultation.

Since the data for the metrics are environment~dependent,
the Main Menu has an option for updating the metrics data files.
Data for this utility is collected from all projects that have
been run through the SOFTMAN "Complete® utility. Upcon completion
of each project, the manager should run this utility and enter
the final values of all parameters. The "Metrics Update" utility
can then be run to ensure that the metrics are adjusted by the

data from the completed project. This utility is password
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protected so that unauthorized persons cannot change the data
files. It is important to note that the changes made in this
utility are permanent.

The current prototype performs some error checking
functions. It differentiates between numbers and strings. It
does not permit illegal choices. It displays menus for options
and uses graphics for improved I/O operations. Additionally, if
the user does not understand a particular question, help is

provided.

10.5 ENHANCEMENTS

SOFTMAN is under development as a working prototype. Its
purpose is to show the feasibility of applying expert systems to
software project management. An expanded system could have
several capabilities.

One major enhancement is to make the metrics dynamic. The
data used to make judgements will be dynamically collected and
updated in the data files for z particular environment. Although
user inputs will influence the data files, all such operations
will be transparent to the user. currently, only the
language-dependent environment parameters are dynamic (i.e., they
are read from the disk when SOFTMAN is first initialized). The
user can change this data in the ENV.DAT file. In the future,
each time data for a new project is entered, the system will

automatically update the metrics in the data files.
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A utility to retrieve previous projects relevant to a
particular search (e.g., manager name or date of project start)
is planned. This facility can aid managers when estimating new
projects. Since projects can be recalled and consulted, such
capability can also be used to train new personnel.

Enhanced help facilities can aid decision making and
improve manager judgements. At present, such capabilities are
limited. Since it is quite common for users to misunderstand
questions and feed erroneous data, an expanded narrative could
improve user inputs. In addition, minimal capabilities are
provided by Intelligence/Compiler to include "how" and "“why"
explanations. These capabilities must be built using the Turbo
Pascal interface.

Future plans include a separate utility for each
development parameter input (e.g., number of lines of code).
These utilities can be used to calculate parameter values. In
addition, external Pascal programs could be called from within
SOFTMAN to return a parameter's value.

A utility to monitor a manager's performance with regard to
estimate accuracy can be developed. When the manager uses the
“New Project" utility and enters estimates, the system will
consult past standards for similar projects. Therefore, a guide
for current judgements and individual manager performance will be
provided.

The present research projects (both SOFTMAN and

ARROWSMITH-P) assume that lines of code is an adequate and useful
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parameter for gauging a project's "“health." However, a more
accurate measure may be the number of functional modules (e.g.,
menu routines and report generators). This will be investigated
further in SOFTMAN.

At present, SOFTMAN addresses only the coding stage of the

SDLC. There are no 1links to the design phase or to the

maintenance phase. However, the system could include design
considerations in the REMOVER module asking the manager to
evaluate the quality of the system design. It has been reported
(Boehm, 1975; Hamilton, 1976) that approximately 65-75% of all
errors occur due to faulty design. Since a faulty or weak design
often leads to coding problems, this capability could increase
the overall management efficiency.

One of the important differences between SOFTMAN and
ARROWSMITH-P is that SOFTMAN uses different metric standards in
each coding stage. To inform the manager of the current coding
stage and advise regarding the appropriate coding stage, the
individual stages need to be clearly defined. To determine such
differences, temporal environment-dependent data will be
gathered.

In summary, SOFTMAN has shown that software management is a
candidate area for automated support. By 1990, it is estimated
that the shortfall of software engineers and analysts will reach
one million in the aerospace/defense industry alone, (Vosburgh,
1987). Since it is anticipated that this lack of technical

personnel will not be fulfilled, it must be compensated by
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providing intelligent support tools. Better and more efficient
management of the available resources will enhance the ability to

build reliable systems. Sufficient interest has been generated

in this area to encourage future research.
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1l. DISCUSSION

The application of AI to software engineering can
qualitatively and quantitatively improve the software development
process. Such an application is most feasible through expert
systems. This is due to the nature of software design and
development. It is an activity that requires knowledge of not
only programming techniques, but also of the application domain.
Since expert systems can incorporate both kinds of knowledge
through knowledge bases, they offer a good prospect for
introducing AT in software engineering. An investigation of
current research projects corroborates this notion. 1In addition,
it has provided an insight into the path such research has taken
and an indication of future direction.

Extensive research has been conducted in automatic code
generation and specification languages. However, little effort
has been devoted to automating the requirements analysis phase.
Application of AI concepts such as natural language processing to
automate this phase can lead to increased speed and ease in
system development.

The prototyping approach can lead to a substantial increase
in productivity. However, conventional software development
procedures do not allow the adaption of this approach as a
feasible system development methodology. The application of AI
can make prototyping a viable alternative to the traditional
SDLC. Therefore, research efforts to increase automation in
prototyping should be encouraged.
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Automated software management support is another area that

has not generated much interest in the past. SOFTMAN and

ARROWSMITH-P which are both knowledge-based have demonstrated the
feasibility of using AI techniques for this process. Although
the validity of metric-based measurements has been in debate,
SOFTMAN has illustrated that metrics can provide sufficient
information to judge project "health."

Current research has succeeded, to a limited extent, in
automating certain SDLC phases. Research efforts such as the
ones highlighted in this report focus on automating several of
these phases. In the near-term, more expert systems addressing
specific SDLC activities will emerge However, a fully
integrated, automated software development environment is a long-

term goal.
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13. ANNOTATED BIBLIOGRAPHY
13.1 GENERAL

Ary, D. and S. Saib, "TIMM/TUNER - The Intelligent Vax Computer
Tuner," VAX/RSTS Professional, 7(2), 32-40 (1985).

This article was written by two employees
of the General Research Corporation to
report on their usage of GRC’s expert
system shell, TIMM (The Intelligent Machine
Model) . They have used the knowledge of
experts in adjusting a VMS-based VAX
system’s parameters to suggest performance
tuning tasks. A "walkthrough" of a sample
consultation is given followed by
suggestions for system enhancements.

[Aid VAX Tuning)

Basili, V. R. and C. L. Ramsey, "ARROWSMITH-P - A Prototype
Expert System for Software Engineering Management," pp. 252-264
in K. N. Karna (ed.) Proceedings of Expert Systems in Government
Symposium, McLean, Virginia, October 24-25, 1985, 1IEEE Computer
Society Press, Washington, D. C., 1985.

The authors built two versions of a
software management expert system: one
rule-based; one frame-based. The systems
were developed in KMS, an expert system
shell used at the University of Maryland.
The knowledge bases contain possible causes
for aberrations in such measurements as
programming hours, computer time, and
number of changes. When an abnormal
software development pattern 1is detected,
an explanation of possible causes is
provided. When the prototypes were
compared, it was determined that the rule-
based version provided more complete
solutions than the frame-based prototype.
Results of the comparison are provided as
are plans for system(s) revisions.

(ARROWSMITH-P - Management)
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Blanchard, D. C. and R. M. Myers, "The Knowledge Representation
Tool," pp. 137-147 in Proceedings of ROBEXS ‘85: The First Annual
Workshop on Robotics and Expert Systems, NASA/Johnson Space
Center, June 27~28, 1985, Instrument Society of America, Research
Triangle Park, North Carolina, 198S5.

In a sketchy, and, at times, difficult to
follow article, the authors present a
discussion of KRT (Knowledge Representation
Tool) . KRT is a LISP-based system that
aids a software engineer in the "System
Model" approach to structured analysis.
(The System Model uses data flow diagrams,
mini-specifications, and a data
dictionary.) KRT represents knowledge in
an object-oriented programming style;
process objects are subdivided until they
are refined to the level of mini-
specifications. The authors suggest that
KRT could aid software engineers in several
ways; the primary example given is in the
area of software maintenance.

[aid Structured Analysis
and Software Maintenance]

Blum, B. I. and V. G. Sigillito, "an Expert System for Designing
Information Systems, " Johns Hopkins APL Technical Digest,
7(1), 23-30 (1986).

The authors point out that knowledge needed
to develop software (i.e., software
engineering knowledge) can be viewed in two
major divisions: product dependent and
algorithmic, or application specific and
heuristic. The lao are suitable for
representation in an expert system
knowledge base. Using this division as a
guiding factor, the authors propose the
development of an integrated environment
for system building (ESB). ESB will
consist of three modules: a definitiqn
model for capturing application domain
knowledge; a transformation module where an
expert system changes the specifications
developed in the definitions module ipto
executable specifications; and a generation
module for generating the program.

{Aid Analysis, Specification, Design, Code Generation]
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Cronk, R. N. and D. V. Zelinski, "“ES/AG: System Generation
Environment for Intelligent Application Software," pp. 96-100 in
Proceedings SOFTFAIR II: A Second Conference on Software
Development Tools, Techniques, and Alternatives, San Franclsco,
California, December 2-5, 1985, IEEE Computer Society Press,
Washington, D. C., 1985.

An integrated set of software development
tools and languages that is expert system-
based is described - Expert
System/Application Generator (ES/AG). The
knowledge base contains three types of
knowledge: factual, procedural, and non-
procedural. Knowledge is represented by
rules (for non-procedural knowledge) and
frame-like  symbols (for factual and
procedural knowledge) . Non-procedural
control strategies, explanation facilities,
a user interface to the problem-solving
model, a LISP interpreter, and debugging
facilities are included. ES/AG runs in a
Unix environment and has been used at Bell
Laboratories for several applications
(e.g., equipment configuration and software
cost estimating).

[ES/AG)
Dunning, B. B., "Expert System Support for Rapid Prototyping of
Conventional Software," pp. 2-6 in Proceedings of Autotestcan
’85: IEEE International Automatic Testing Conference,

Uniondale, New York, October 22-24, 1985, IEEE, New York, New
York, 1985.

The author reviews conventional software
development methods and rapid prototyping
procedures. He then says that the
flexibility of a LISP processor and an
expert system shell (e.g., KEE or EXPLORER)
can make rapid prototyping easier.
However, he does state that the savings in
time and costs are highest during the
design phase. Implementation usually means
rewriting the entire prototype in a
conventional language; this process takes
seven times the original effort. Major
advantages and a few disadvantages of this
approach to software development are cited.
Overall, a rather terse 1look at a topic
that deserves more indepth analysis.

(Aid Rapid Prototyping]
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Fickas, S. F., “"Automating the Transformational Development of
Software," IEEE Transactions on Software Engineering, SE-11(11),
1268-1277 (1985).

The author uses AI techniques to alleviate
the major weakness (undermechanization) of
Balzer’s transformational implementation
(TI) model. Fickas found that the
formalization of goals, strategies,
selection rationale, and human TI methods
were areas that needed to be addressed
before the model could be automated.

GLITTER was developed (written in HEARSAY
III) and used for creating a package router
and a small text editor. GIST was the
specification language used in GLITTER. It
was suggested that information generated by
GLITTER on problem-solving steps could help
in maintenance; research is currently
underway to classify possible changes to
specifications and to identify the
associated salvageable code.

Overall, a somewhat confusing article. the
small degree of automation offered may not
justify the use of a new system and
specification language.

[GLITTER/GIST - Program Transformation])

Frenkel, K. A., "Toward Automating the Software-Development
Cycle," Communications of the ACM, 28, 578-589 (1985).

Two automatic programming research efforts
are discussed: Intermetrics’ (Cambridge,
Massachusetts) compiler code generator, and
the University of Waterloo’s (Ontario,
Canada) real-time debugging system, Message
Trace Analyzer. While the author agrees
with some researchers who feel that expert
systems may be ‘'oversold" and that a
proliferation of AI languages could produce
much of the same problems that now exist
with the conventional software development
languages, she also feels that the need for
increased productivity is so great that any
avenue of relief will be pursued.
Furthermore, the work done now in expert
systems will Jjust add to the next
generation of software productivity tools.

(Aids Code Generation/Debugging)
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Haradhvala, S., B. Knobe, and N. Rubin, "Expert Systems for High
Quality Code Generation,"™ pp. 310-313 in Proceedings of the
First Conference on Artificial Intelligence Applications, Denver,
Colorado, December 5-7, 1984, IEEE Computer Soclety Press,
Washington, D.C., 1985.

Intermetrics employees describe the
evolutionary process of developing an
expert system to aid in compiler code
generation. The final system was based
upon a modified version of Cattell’s (CMU)
Production Quality Compiler Compiler (PQCC)
project for the Bliss-II. Written in
Pascal, it runs on IBM 370’s. The
knowledge base contains some 500 production
rules; a depth-first search strategy is
followed. Development took three to six
person months.

{Aid Code Generation]

Harandi, M. T., "Applying Knowledge-Based Techniques to Software
Development," Perpsectives in Computing, 6(1), 14-21 (1986).

A discussion of the features of KBPA, a
kr owledge-based programming assistant
developed at the University of Illinois.
The author details the aspects and problems
in such systems and highlights the
prototype implementation of a design,
coding, and debugging unit. The paper is
good reading for understanding the issues
in knowledge-based techniques.

(Design, Debugging, Code Generation)

63




Harandi, M. T. and M. D. Lubars, "A Knowledge Based Design Aaid
for Software Systems," pp. 67-74 in Proceedings SOFTFAIR II: A
Second Conference on Software Development Tools, Techniques,
and Alternatives, San Francisco, California, December 2-5, 1985,
IEEE Computer Society Press, Washington, D. C., 1985.

The paper discusses the capabilities of a
prototype developed by researchers at the
University of Illinois at Urbana-Champaign.
The system addresses the specification and
design phases of software engineering.
Using the dataflow modeling method of
program design, the development process is
viewed as a series of refinements (i.e.,
leveling). The systen has three
components: a knowledge base with design
schemas, a data dictionary, and application
domain knowledge; a design refinement unit
which is an agenda~driven inference engine;
and natural language and graphics
interfaces. The prototype runs on a Sun
workstation, and, according to the authors,
has been used to develop small example
systems.

(Aid Specification/Design])

Hill, ¢C., "“A Software Revolution Looms on the Horizon,"
InformationWEEK, 94, 40 (1986).

This article stresses the quantitative and
qualitative improvements to be gained 1n
MIS software development by utilizing

automated productivity tools. It states
that many Fortune 500 companies are
employing such tools to eliminate
applications backlogs and improve quality,
citing significant reductions in
development schedules. It concludes by

emphasizing the benefits of development
tools to both programming staffs and MIS
managers.

(Future of MIS)
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Janusz, P. E. and P. T. Eckert, "Software Quality Assessment
Measure," pp. 282-284 in Proceedings of the Annual Reliability
and Maintainability Symposium, IEEE, New York, New York, 1986.

The Army assessed the feasibility of using
expert systems to aid quality assurance,
Software Quality Assessment Measure (SQAM).
The authors used manuals and reports to
analyze one aspect of a QA officer’s job
(i.e., review of system storage allocations
for adequacy). That segmented task was
modeled using Teknowledge’s expert system
shell, M.la (for expert consultation) and
dBase III (for the operations checklist and
menu generation).

[SQAM System)

Kornell, J., "A VAX Tuning Expert Built Using Automated Knowledge
Acquisition," pp. 38-41 in Proceedings of the First
Conference on Artificial Intelligence Applications, Denver,
Colorado, December 5-7, 1984, IEEE Computer Society Press,
Washington, D.C., 1985.

The paper covers the use of General
Research Corporation’s (GRC) expert system
shell, TIMM. The author is a GRC employee
who used the tool to develop a prototype.
TIMM/Tuner tunes VAX computers to gain
maximum performance. The system is modular
in nature and contains seventeen knowledge
bases. The author points out that when
changes in the system configuration or load
occur (e.g., the number of terminals or
users increase), up to one hundred
parameters must be checked and adjusted
accordingly. Overall, a very brief look at
the prototype is given, with most of the
discussion centering upon the capabilities
and advantages of the expert system shell.

(TIMM/Tuner)
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McCrone,

J., "Alvey Shows a Defence Bias," Computing,

5, 14 (1985).

Even though Britian’s Alvey was intended to
move research from the laboratory into

commercial use, the program has now
focussed on MoD (Ministry of Defence)
needs. This news article covers some of
the reasons why Alvey’s software

engineering program has become defense
oriented. Major reasons suggested were the
collapse of the Ada community’s projects
and NATO’s push for the use of Ada. Four
primary ipse (integrated project support
environment) projects are discussed. The
Eclipse project addresses an Ada ipse which
will run on the VAX minicomputer. Aspect
will port Ada to Unix software development
tools. MDSE (Mascot Design Support
Environment) is being extended to include
an expert system that will aid software

design and prototyping. Forest addresses
the specifications stage of system
development.

September

[(Alvey Projects)

Meyer, B., "The Software Knowledge Base," pp. 158-165

International Conference on Software Engineering,

in Eighth
Imperial

College,

London, United Kingdom, August 28-30,

1985, 1IEEE

Computer

Society Press, Washington, D. C., 1985,

A knowledge-based approach versus a
database approach to storing information
about a software project is discussed. The
project, referred to as Software Knowledge
Base (SKB), aids with the storage of

software components and their
relationships. Design criteria and
software relations and constraints are
included. The author feels such a

knowledge base could be used for all phases
of the development life cycle (e.g.,
specifications, design, testing, project
management). Also discusssed are follow-on
research efforts that are currently
underway at the University of California,
Santa Barbara (e.g., concurrent development
of an SKB in PROLOG and a relational
database using INGRES).

(Project Management)
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Pidgeon, C. W. and P. A. Freeman, "Development Concerns for a
Software Design Quality Expert System," 1in Proceedings of the
22nd ACM/IEEE Design Automation Conference, Las Vegas, Nevada,
June 23-26, 1985, IEEE Computer Socilety Press, Washington, D. C.,
1985.

This paper reviews a number of articles
regarding software design systems. It is a
comprehensive study of the issues dealing

with systems based on Module
Interconnection and Program Design
Languages (MIL/PDL). The author gives an

example of interactions that take place
between human designers and an expert
system dealing with quality design.

[Design]
Ramamoorthy, C. V., V. Garg, and R. Aggarwal, "Environment
Modeling and Activity Management in Genesis," pPp. 2-9 in
Proceedings SOFTFAIR II: A Second Conference on Software
Development Tools, Technigues, and Alternatives, San Francisco,
California, December 2-5, 1985, IEEE Computer Society Press,

Washington, D. C., 1985.

Genesis 1is a Unix tool being developed by
the University of California, Berkeley
researchers to support software
development. It is primarily a Xknowledge
based resource and activities management
system. Its knowledge base contains an
entity-relation-attribute model that is
extended by rules about software resources

and the development process. The tool
consists of the following components: a
specification language; a resource

extractor (to provide traceability of
resources between requirements and the rest
of the system):; a resource manager (to
manage entities):; and an activity manager
(to check for inconsistency and to co-
ordinate the work of multiple programmers).
Research on this project has been in
process since 1983. Several planned and
possible enhancements are listed.

[GENESIS - Management)
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\

Rawlings, T. L., "“A Technological Approach to Automating Software
Maintenance,"” pp. 147-149 in Proceedings of the First Software
Maintenance Workshop, 1983, IEEE, New York, New York, 1984.

The author says much software maintenance
could be eliminated with automatic program
generators where changes in specifications
just mean system regeneration. From user
specifications, a software manufacturing
system (DARTS) generates source code for
all computers in a distributed system. The
author feels much of the problem with
software maintenance lies in capturing and
communicating knowledge about the software
system. Using a knowledge based system to
capture such information 1is suggested.
Since DARTS captures the programmer’s
expertise, users can change specifications
and regenerate the program without
assistance from the original developer.

[DARTS - Maintenance]

Rich, C., "Artificial Intelligence and Software Engineering: The
Programmer’s Apprentice Project," pp. 29 in Proceedings of the
1984 Annual Conference of the Association for Computing
Machinery: The Fifth Generation Challenge, San Francisco,
California, October 8-10, 1984, Association for Computing
Machinery, Inc., New York, New York, 1984.

Rich presents a briefing on the status of
the Programmer’s Apprentice Project at MIT.
The goals are presented: to develope an
intelligent assistant for progranmnmers.
Information about the application domain is
provided: how programmers analyze, modify,
verify, document, etc. the programming
process. Plans for a new program editor
and its capabilities are discussed; the
new editor will allow many logical changes
in a program to be achieved by one
command.

(PROGRAMMER’S APPRENTICE - Analysis/Design]
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Rokey, M., "The Dataflow Architecture: A Suitable Base for the

Implementation of Expert Systems," Computer Architecture News,
13(4), 8-14 (1985).

The author proposes the dataflow model of
architecture over the conventional Von
Neumann style for building expert systems.
One major advantage listed is the inherent
parallelism in the dataflow model leading

to more efficient rule-searching.
Furthermore, the problems of incremental
change can be removed in this model. The

paper suggests that it may be worthwhile to
build systems with such a model.

(Design)

Ruth, G. R., "PROTOSYSTEM I - An Automatic Programming System,"
pp. 215-221 in C. Rich and R. C. Waters (eds.), Readings in
Artificial Intelligence and Software Engineering, Morgan Kaufman
Publishers, Inc., Los Altos, California, 1986.

The paper discusses a research project
underway at MIT. The PROTOSYSTEM I project
has the goal of taking user specifications,
automatically designing the program, and
generating the code. To date, only the
PL/1 and JCL code generating modules have
been developed.

(Code Generation)
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Schindler, Jr., P. E., "An Intelligent Way to Develop Software,"
InformationWEEK, 71, 17 (1986).

This article contends that knowledge-based
systems can be employed in traditional

software development environments. Such
systems can retain critical design
information in the early stages of a
project for use in later stages. The
article also indicctes IBM’s recent
interest in AI applications. This 1is

evidenced by IBM’s introduction of a
knowledge-based COBOL structuring tool and
expert system shells for VM and MVS
systemns.

{AI for Software Development]

Stephens, M. and K. Whitehead, "“The Analyst ~ A Workstation for
Analysis and Design," pp. 364-369 in Eighth International
Conference on Software Engineering, Imperial College, London,
United Kingdom, August 28-30, 1985, IEEE Computer Society
Press, Washington, D. C., 1985.

Requirements analysis (CORE) and design
(MASCOT) methods are supported via expert
systems and knowledge base techniques in a
personal workstation, ANALYST. The
graphics and windowing capabilities are
written in PASCAL; the rule-based methods,
and storage and retrieval of application
information are written in PROLOG. The
authors feel that by wusing a knowledge-
based approach, new rules can be added as
needed and new methods can be added to
support other phases of the software
development life cycle. Shortcomings of
the system’s performance as judged against
human experts are cited, as are potential
system enhancements.

(ANALYST - Analysis/Specs/Design]
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Studer, R., "Knowledge-Based Software Engineering Environments,"
Computer Physics Communication, 38(2), 277-287 (1985).

A method is proposed for controlling and
managing communication between team members
working on a project that is organized in a
decentralized manner. A distributed
knowledge-based software engineering
environment (DSEE), is used to collect and
distribute information to team members.
The knowledge base contains four types of
information: objects and their
relationships in a data base; structure and
responsibility of the project team;
description of each tool provided by the
system; and team member skills and
experience levels, as well as team
function. The Temporal Hierarchical Data
Model with Petri Net concepts (THM-Net) has
been chosen as the architectural model for
the systen.

(DSEE - Project Management)

Sussman, G. J., "Intelligent Support for the Engineering of
Software," pp. 397-399 in Eighth International Conference
on Software Engineering, Imperial College, London, United
Kingdom, Augqust 28-30, 1985, IEEE Computer Society Press,
Washington, D. C., 1985.

A short article that suggests other
branches of engineering (e.g., electrical
engineering) may be able to contribute to

the process of software engineering. The
problems of debugging are cited. Al
research in areas of formulating

theoretical constructs as computational
algorithms for software development is

suggested. The author notes value in the
LISP-family of tools in terms of recursion
and manipulation. He feels such
"flexibility" could support rapid
prototyping.

(Aid Debugging)
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Wolfe, A., "Software Productivity Moves Upstream," Electronics,
58(12), 80-86 (1986).

The article focusses on the work being done
in the area of automating the software
development life cycle, especially those
phases ‘“upstream" from code generation.
Research endeavors are discussed: MCC’s
LEONARDO (design phase); the Software
Engineering Institute’s SOFTWARE FACTORY
(all phases); IBM/Japan’s PROMPTER (code
generation); Lockheed’s work in low-level
design; and TRW’s work on design tools and
cost models. The author says that testing
and maintenance are major issues that must
be addressed. With NASA and SDI efforts
increasing, the importance of qguality
assurance and testing to detect and correct
all possible errors is paramount. With
automated design and documentation,
maintenance will improve.

[Current Research]

13.2 PROTOTYPING

"AI Environment Speeds Software Development," Systems and
Software, 3(8), 111-118 (1984).

This paper discusses the advantages in
using the Symbolics 3600 environment for
software development and rapid prototyping.

Beregi, W. E., "“Architecture Prototyping in the Software
Engineering Environment," IBM Systems Journal, 23(1), 4-17
(1984).
The author examines various defects in
present day software methodology. A
desciplined approach, utilizing formal
specification techniques, rapid
prototyping, and static and dynamic

behavior analysis techniques to verify
system expectations is presented.
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Bottom, J. S., A. D. Bernard, and K. W. Anderson, “"Application
Prototyping with Microcomputer Database Managers," pp. 60-73 in
Proceedings of the _Office _Automation Society International
Conference and Workshop for Office Professionals, September _3-6,
1985, San Francisco, California, Office Automation International
Society, 1985.

The paper details the various tools that
are essential for rapid prototyping.
Various commercially available
microcomputer database packages are
compared in terms of ease of use and power.

Carey, T. T. and R. E. A. Mason, "Information System Prototyping:
Techniques, Tools, and Methodologies,® INFOR, 21(3), 176-190
(1983).

The paper reviews prototyping techniques in
use. A number of prototyping tools, their
techniques and methodologies are discussed.

Gremillion, L. L. and P. Pyburn, “"Breaking the Systems
Development Bottleneck," Harvard Business Review, 61(2), 130-137
(1983).

Three alternative approaches to the
traditional life-cycle approach are
presented. The purpose of the proposed
mathods is to get the user involved in the
process of software development. Criteria
for selecting the appropriate development
strategy are discussed.

Johnson, J. R., "A Prototypical Success Story," Datamation,
29(11), 251-256 (1983).

This article discusses various levels of
prototyping. The author presents
development situations where prototyping
and fourth generation languages yield best
results.

Loomis M. E. S. and T. P. Loomis, "“Prototyping and Artificial
Intelligence," pp 65~73 in M. E. Lipp (ed.) Prototyping: State of
the Art Report, Pergamon Infotech, Maidenhead, Berkshire,
England, 1986.

In this paper, the advantages and
disadvantages of applying artificial
intelligence techniques for rapid
prototyping are discussed.
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Mason, R. E. A., T. T. Carey, and A. Benjamin, "A
Information Systems Prototyping," ACM Sigsoft

Tool for
Software

Engineering Notes, 7(5), 120-125 (1982).

This paper discusses an "architecture -
based® methodology, where a prototype is
developed using interactive scenarios.
ACT/1 is a development tool specifically
designed for this purpose. Its usage as a
product specification and production tool
are examined.

Naumann, J. D., "Prototyping: The New Paradigm for

Development," MIS Quarterly, 6(3), 29-44 (1982).

This article discusses various principles
underlying prototyping. Of interest is a
graphic cost comparision between the life-
cycle and prototyping approach. Exanmples
of projects developed by prototyping are
presented.

Spies, P. B., "Designing Systems for Users," Library
1(1), 75-84 (1983).

Design errors account for more than fifty
percent of the overall development cost.
According to the author, this is the
motivation for rapid prototyping. Examples
of success with the prototyping approach
are cited.

Systems

Hi Tech,

Wess, B. P. Jr., "Artificial 1Intelligence Techniques Speed

Software Development, " Mini-Micro Systems, 17(11),
(1984) .

This paper outlines the ways in which
Artificial 1Intelligence techniques (e.g.,
Prolog) were used in the development of a
commercial product.
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APPENDIX A: SOFTMAN SCREENS

The run-time version of the SOFTMAN system is resident on a
5 1i/4" floppy diskette. A "SOFTMAN" command will 1load the
progranm, After entering the current date, the user interacts
with the system via a "Main Menu." By positioning the arrow on
the same line as the desired selection and pressing "“Enter," a
menu selection is made.

Upon choosing an option, the user must respond to a series
of questions. Responses are primarily in the form of numeric
data. The number and nature of the questions vary with the
option chosen.

Once the series of questions has been completed, or the
operation (e.g., file deletion) accomplished, the "Main Menu" is
again displayed. When no further options are desired, the user
can return to the "Main Menu," place the arrow on the same line
as the "Exit" option, and SOFTMAN will return the user to the

operating systemn.
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APPENDIX B: SAMPLE CONSULTATION

A sample consultation is run in SOFTMAN by choosing the
“Consult" option from the main menu and entering the project
name. Then, the user selects the coding stage and provides
numeric values for the five input development parameters.
SOFTMAN calculates metric values and responds with a bar menu
listing detected anomalies.

In some cases, the user can analyze each anomaly. By making
a selection from the menu, SOFTMAN will suggest solutions based
on the type of anomaly. In some cases, the user is asked to
revise initial project parameters. When the consultation is
finished, it can be saved for later viewing by choosing the

“Save" option.
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APPENDIX C:

Abstract Data Types

AIRMICS

Arrowsmith-p

Coding Phase

Coding Stage (SOFTMAN)

Data Flow Diagrams

Design Phase

Dynamic Metrics

GLOSSARY

A

0

o

139

OF RELEVANT TERMS

Data
whose
transparent to
defined by a
operations that
performed on it.

structure or type
implementation is
the user:
set of
can be

The Army Institute for
Research in Management
Information, Communications

and Computer Science, Atlanta,
Georgia.

A software management project
done as a Masters thesis, the
University of Maryland, under
Dr. V. Basili.

in which the
to

The SDLC phase
design 1is converted
computer prograns.

The coding phase is generally
divided into early, middle,
and late stages.

Software design representation
schemes based on data flow
between the different modules.

The SDLC phase in which the
high-level design of the
system is developed.

Metrics that are continually
updated.




Environment-Dependent Data

Expert System Development Tool

Flowcharts

Fourth Generation Languages

Frame

Frame-Based Approach

Functional Modules

GLITTER

140

Data determined by the
software and hardware
configuration; used to drive

the Softman system.

Software which helps in
building expert systems by
providing intelligent editors,
knowledge representation
facilities, database 1links,
etc.

Software design representation
mechanisms based on the
program’s logic flow.

Non-procedural languages which
have procedural components
(e.g., data structures and
procedures) incorporated, thus
relieving the user of such
details.

A collection of slots which
represent events, objects, and
their attributes.

A knowledge-based system
wherein information is stored
as frames.

Distinct, and independent
routines; each performing a
separate function (e.g.,
report generator and input
output routine).

Research project at the
University of Oregon, Eugene;

based on TI.




HEURISTICS

HIPO Clarts

How and Why

Implementation and Verification
Phase

Inference Engine

Input Parameters

Intelligence/Compiler

KBPA

KBSA

L
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Rules-of-thumb that are used

for decision making by
intelligent systems.
Hierarchial Input/Output

Diagrams; data flow diagrams.

Expert system facilities
commonly used to explain the
system’s line of reasoning.

The SDLC phase in which the
system is put on-line and
extensively tested.

Component of an expert system
architecture which performs
the match, select, and execute
cycle.

Quantitative measurements
about software characteristics
(e.g., number of lines of code
and number of errors).

An expert system development
tool that 1is marketed by
IntelligenceWare, Los Angeles,
California.

Knowledge-Based Programming
Assistant, University of
Illinois, at Urbana-Champaign.

Knowledge~Based Software
Assistant, Rome Air
Development Center, Rome, New

York.




Maintenance Phase

Method (GLITTER)

Metric

Output Parameters

PA

Plan Calculus

Project Parameters

Query Language

o]
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The SDLC phase in which the
software is continuously
upgraded and modified to meet
user needs and to correct bugs
which surface during usage.

A formal mechanism for
representing decision-making
strategies in GLITTER.

A guantitative software
measure used to compare Actual
and Optimal values of code
characteristics (e.g., errors
and lines of code).

SOFTMAN's qualitative
decisions regarding the
project (e.g., time schedule
and productivity).

Programmer’s Apprentice, MIT.

A method used by PA to
represent programs and
programming knowledge.

Estimates made by a manager
about a particular project
when it is first run in
SOFTMAN.

Language used to obtain
information from a database.




RADC

Prototyping

Requirements Phase

Rule-Based Approach

SDLC

Selection-Rule (GLITTER)

Softman

Software Crisis

Software Development Life
Cycle

Software Management

n
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Rome Air Development Center,
Rome, New York.

Software development process
wherein the program is
interatively refined until it
meets complete specifications.

The first phase of the SDLC in
which system requirements are
determined at a very high
level.

A knowledge-based system
wherein information is stored
as If-Then structures.

Software Life

Cycle.

Development

Mechanism used in GLITTER to
resolve conflicts between two
goals which are simultaneously
ready for firing.

The Software Manager'’s
Apprentice; project currently
underway on the Oak Ridge
Reservation.

Phenomenon
failure of
software development
to meet software needs.

caused by the
conventional
methods

Process of developing a

software systen from
conception through
implementation and

maintenance.

Process of co-ordinating and
controlling a software
development team’s activities
in terms of budget, |user
needs, time constraints, etc.




Specification Languages

Specifications Phase

I
Temporal Changes
Transformational Implementation
(TI)

v
VHLL

w

Waterfall Method

144

VHLLs which allow progran
expression in terms of
specifications; progressively
refining them ¢to 1lower
abstraction levels.

The SDLC phase 1in which
requirements are expressed in
a formal language.

Changes over time.

Software devclopment paradigm

which starts with a high-level
specification of the program
and applies various
transformations until the
program is generated.

Very High Level Language.

Traditional method of
developing software; entails
sequential stages.




